Part-Whole Model

Bar Model (single)

$$
\begin{array}{ll}
7=4+3 & 7-3=4 \\
7=3+4 & 7-4=3
\end{array}
$$

Benefits

This part-whole model supports children in their understanding of aggregation and partitioning. Due to its shape, it can be referred to as a cherry part-whole model. When the parts are complete and the whole is empty, children use aggregation to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, children use partitioning (a form of subtraction) to find the missing part.

Part-whole models can be used to partition a number into two or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apply their understanding of the part-whole model to add and subtract fractions, decimals and percentages.

Discrete

$7+3=10$

$7-3=4$
4
Continuous

2,394
1,014

$7-3=4$
$2,394-1,014=1,380$

Benefits

The multiple bar model is a good way to compare quantities whilst still unpicking the structure.
Two or more bars can be drawn, with a bracket labelling the whole positioned on the right hand side of the bars. Smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective for larger numbers.

Multiple bar models can also be used to represent the difference in subtraction. An arrow can be used to mode the difference.

When working with smaller numbers, children can use cubes and a discrete model to find the difference. This cubes and a discrete model to find the difference. This
supports children to see how counting on can help when finding the difference.

Number Shapes

Benefits

The single bar model is another type of a part-whole model that can support children in representing calculations to help them unpick the structure.

Cubes and counters can be used in a line as a concrete representation of the bar model.

Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar model can support children Io is calculate by counting on from the larger number. is a

Continuous bar models are useful for a range of values. Each rectangle represents a number. The question mark indicates the value to be found

In KS2, children can use bar models to represent larger numbers, decimals and fractions.

Benefits

Number shapes can be useful to support children to subitise numbers as well as explore aggregation subitise numbers as well as explation
partitiong and number bonds.

When adding numbers, children can see how the parts come together making a whole. As children use number shapes more often, they can start to subitise the total due to their familiarity with the shape of each number.

When subtracting numbers, children can start with the whole and then place one of the parts on top of the whole to see what part is missing. Again, children will start to be able to subitise the part that is missing due to their familiarity with the shapes.

Children can also work systematically to find number bonds. As they increase one number by 1 , they can see that the other number decreases by 1 to find all the possible number bonds for a number.

Number Lines (labelled)

$5+3=8$

Benefits

When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction

Using the language of parts and wholes represented by objects on the ten frame introduces children to ggregation and partitioning
Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number.

Children can also use ten frames to look at augmentation (increasing a number) and take-away (decreasing a number). This can be introduced through a first, then, now structure which shows the change in the number in the then' stage. This can be put into a story structure to help children understand the change e.g. First, there were 7 cars. Then, 3 cars left. Now, there are 4 cars.

Number Tracks

$10-4=6$

$8+7=15$

Number Lines (blank)

$35+37=72$

$35+37=72$

$72-35=37$

Benefits

Number tracks are useful to support children in their understanding of augmentation and reduction.

When adding, children count on to find the total of the numbers. On a number track, children can place a counter on the starting number and then count on to find the total.

When subtracting, children count back to find their answer. They start at the minuend and then take away the subtrahend to find the difference between the numbers.

Number tracks can work well alongside ten frames and bead strings which can also model counting on or counting back.

Playing board games can help children to become familiar with the idea of counting on using a number track before they move on to number lines.

Benefits

Blank number lines provide children with a structure to add and subtract numbers in smaller parts.

Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately.

Children may also count back on a number line to subtract, again by jumping to the nearest 10 and then subtracting the rest of the number.

Blank number lines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting with the smaller numbers. This can be done by starting with the smaller then add up the parts they have counted on to find the difference between the numbers.

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange.. The representation becomes less efficient with larger numbers due to the size of Base 10. In this case, place value counters may be the better model to use.

When adding, always start with the smallest place value column. Here are some questions to support children. How many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How many ones do we have left? (Write in ones column) Repeat for each column.

Base 10/Dienes (subtraction)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It important that children write out their calculations alongside using or drawing Base 10 so they can see the

Children should first subtract moving on to subtraction with exchange. When building the model, children should just make the minuend using Base 10, they then subtract the subtrahend. Highlight this difference to addition to avoid errors by making both numbers. Children start with the smallest place value column. When there are not enough
ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.
This model is efficient with up to 4 -digit numbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

Place Value Counters (Subtraction)

365
$+2.41$ 6.06

Benefits

Using place value counters is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange. Different place value counters can be used to represent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When adding money, children can also use coins to support their understanding. It is important that children consider how the coins link to the written calculation especially when adding decimal amounts.

Benefits

Using place value counters is an effective way to suppor children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.
Children should first subtract without an exchange before moving on to subtraction with exchange. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When building the model, children should just make the minuend using counters, they then subtract the subtrahend. Children start with the smallest place value column. When there are not enough ones/tens/hundred to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.

Thinking Academically

Year 1 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part whole model. 10 \square Use cubes to add two numbers together as a group or in a bar.	3 ants 2 2alls \square 8 1 Use pictures to add two numbers together as a group or in a bar.	$10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line/number track and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

＇Thinking Academically＇Calculation Policy
Child First－Aspire－Challenge－Achieve
Year 2 Addition

Year 2 Addition											
Objective and Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten	$50=30=20$ Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$								
Use known number facts Part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20=\square \\ \square+\square=20 \\ \square+\square=\square \\ \square+\square \\ \hline=20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square}^{\square}=\square_{\square}^{\square \square_{\square}}{ }^{\square} \\ & \square \end{aligned}$	$\begin{aligned} \because+\because & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+\text { 昌 } & =\text { 晿 } \\ & \text { 昌品 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ Leads to $30+40+70$ Leads to $300+400=700$								
Bar model	$3+4=7$		$7+3=10$ 7 3 10								

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve
Year 3 Addition

Objective and Strategy	Concrete	Pictorial	Abstract
Column Additionno regrouping (friendly numbers) Add two or three 2 or 3- digit numbers.	 Model using Dienes or place value counters Add together the ones first, then the tens.	Children move to drawing the counters or dienes using a tens and one frame	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping.	Exchange ten ones for a ten. Model using dienes or place value counters. 世TाITIT	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	536 +85 $\frac{H 21}{11}$$+$\begin{tabular}{lll\|}
\hline
\end{tabular}$+$H T
 2 6
 1 3
 4 0
 1 1 |

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 4 to Year 6 Addition

Objective and Strategy	Concrete	Pictorial	Abstract
Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. 1 1	\bullet \ddots \because \because \because \because \bullet \because \because \ddots \ddots 7 1 5 1 \bullet \because Draw representations (dienes of pv coutners) using pv grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	 Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens ones tents hundredtes 00 000 0000 00000 0 $0+$ 00 000 0000 00000 0000	

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 1 Subtraction

Counting back

Represent and use number bonds and related subtraction facts within 20 Part Whole model	Link to addition. Use PPW model to model the inverse.		
	If 10 is the whole and 6 is one of the arts, what is the other part? $10-6=4$ Use of Tens frame, number lines and number tracks.	Use pictorial representations to show the part.	Move to using numbers within the part whole model. When subtracting one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	$13-7$ Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 2 Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$ The children can draw dienes and cross them off.	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes or pv counters to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off.	$43-21=22$

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

'Thinking Academically' Calculation Policy

Child First - Aspire - Challenge - Achieve

Column subtraction with regrouping	Hundreds	Tens	Ones	The children can draw a representation of the dienes or place vaue counters.	-	H	T	0
			- - - 28 - - E			4	48	11
						3	2	5
						1	2	6
	Hundreds	Tens	Ones			H	T	0
	10\%					$\stackrel{3}{4}$	10	11
						2	3	9
						1	6	2

Year 4 to Year 6 Subtraction							
Objective and Strategy	Concrete			Pictorial			Abstract
Subtracting tens and ones	Model process of exchange using base ten or PV counters.$4,357-2,735=1,622$			Children to draw pv counters and show their exchange-see Y3			$\begin{array}{r} 31 \\ 4357 \\ -\quad 2735 \\ \hline 1622 \\ \hline \end{array}$ Ensure the children write out the column method alongside the concrete resources.
Year 4 subtract with up to 4 digits. Introduce decimal		Tens 		Thousands Hundreds $\Theta \varnothing \varnothing \varnothing$ $\Theta \Theta \odot$ $\Theta \Theta \Theta \varnothing$ $\varnothing \varnothing \varnothing \varnothing$ 		0 Ones $0 \varnothing \varnothing$ 	
subtraction through context of money	a) $0.42-0.3=$ \square						

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 1 Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

Child First - Aspire - Challenge - Achieve			
Repeated addition	Use different objects to add equal groups	There are 3 sweets in one bag. How many sweets are in 5 bags altogether? Use pictorial including numberline to solve problems	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 2 Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.

‘Thinking Academically’ Calculation Policy

Child First - Aspire - Challenge - Achieve

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

	Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.		
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

	T	0
	(-)((1)
	(-)(-)	(1)
	(-)((1)
	T	0
	0000	00000
	0000	-0000
	0000	-0000
	0000	00000
	0000	00000

Year 4 Multiplication					
Objective and Strategy	Concrete	Pictorial	Abstract		
Grid method recap from year 3 for 2 digits $\times 1$ digit	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126	Children can represent their work with place value counters in a way that they understand.	Start wit number alongsid		clear addition \square 5 35

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 6 Multiplication

Year 1 Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing		Children use pictures or shapes to share quantities． 发为 \％ \％ 䞠 8 shared between 2 is 4	12 shared between 3 is 4

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 2 Division							
Objective and Strategy	Concrete	Pictorial					
Division as sharing		Children use pictures or shapes to share quantities. $8 \div 2=4$ Children use bar modelling to show and support understanding.				$12 \div 3=4$	

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

Year 3 Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
Division with arrays		Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $28=7 \times 4$

'Thinking Academically' Calculation Policy
Child First - Aspire - Challenge - Achieve

	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$		$\begin{gathered} 28=4 \times 7 \\ 4=28 \div 7 \\ 7=28 \div 4 \end{gathered}$
Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. remainder 2 Use bar models to show division with remainders	Complete written divisions and show the remainder using r .
Short division Using the bus stop method		The children can draw the place value counters and circle the groups for division.	$-\cdots$ 2 1 r1 4 8 5

Year 4 to Year 6 Division		
Objective and Strategy	Concrete - Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	Children can use dienes or place value counters to divide numbers. Children can drawn diagrams with dots or circles to help them divide numbers into equal groups.	Begin with divisions that divide equally with no remainder.
	$115 \div 5=$	$\begin{array}{r} 023 \\ 5 \longdiv { 1 ^ { 1 } 1 ^ { 1 } 5 } \end{array}$
		Move onto divisions with a remainder.
		86 r
	(-) (1) 1	5443
	(-) 11	
	(-) (1) (1)	Finally move into decimal places to divide the total accurately.
	$(1) \bigcirc(1)$	14.6
		$\begin{array}{cc\|ccccc} & 5 & 5 & & 16 & & 21 \\ 5 & 1 & 1 & . & 0 \end{array}$
	Tens	
	¢mmem ene	
		$\frac{0663}{0.52^{5} n^{2} a}$
	ementur ene	

'Thinking Academically’ Calculation Policy
Child First - Aspire - Challenge - Achieve

